Ultimaker

Ficha técnica ABS

Nome químico

Descrição

Características principais

Aplicações

Diâmetro

Não adequado para

Acrilonitrilo-butadieno-estireno

Usado por uma variedade de indústrias em todo o mundo, o ABS é conhecido pelas suas propriedades mecânicas excecionais. O nosso ABS é especificamente formulado para minimizar a deformação e garantir uma adesão entre camadas consistente.

Excelentes propriedades mecânicas e excelente adesão entre camadas (especialmente quando se utiliza o complemento da porta dianteira), estética agradável, deformação mínima e adesão estável à base.

Protótipos visuais e funcionais e fabrico de pequenas tiragens.

Aplicações em contacto com alimentos e aplicações in vivo. A exposição prolongada aos UV pode afetar negativamente as propriedades de uma impressão com ABS. Aplicações onde a peça impressa está exposta a temperaturas superiores a 85 °C.

Especificações do filamento

Desvio máx. de circularidade

Peso líquido do filamento

Comprimento do filamento

<u>Valor</u>	Método

2,85±0,10 mm -

0,10 mm -

750 g -

~107 m -

Informação sobre cores

Cor Código da cor

ABS preto	RAL 9017
ABS branco	RAL 9003
ABS vermelho	RAL 3020
ABS azul	RAL 5002
ABS prateado	RAL 9006
ABS dourado-pérola	RAL 1036
ABS verde	RAL 6018
ABS cor de laranja	RAL 2008
ABS amarelo	RAL 1023
ABS cinzento	RAL 7011

Propriedades mecânicas (*)	Moldagem por injeção		Impressão 3D			
	Valor típico	o	Método do teste	Valor típico	Método do teste	
Módulo de tração	2030 MPa		ISO 527 (1 mm/min.)	1681,5 MPa	ISO 527 (1 mm/min.)	
Resistência à tração no limite	43,6 MPa		ISO 527 (50 mm/min.)	39,0 MPa	ISO 527 (50 mm/min.)	
Resistência à tração na rutura	-		-	33,9 MPa	ISO 527 (50 mm/min.)	
Alongamento no limite	4,8%		ISO 527 (50 mm/min.)	3,5%	ISO 527 (50 mm/min.)	
Alongamento na rutura	34%		ISO 527 (50 mm/min.)	4,8%	ISO 527 (50 mm/min.)	
Resistência à flexão	-		-	70,5 MPa	ISO 178	
Módulo de flexão	-		-	2070,0 MPa	ISO 178	
Resistência ao impacto Izod, com entalhe (a 23 °C	C) -		-	10,5 kJ/m ²	ISO 180	
Resistência ao impacto Charpy (a 23 °C)	58 kJ/m²		ISO 179	-	-	
Dureza	-		-	76 (Shore D)	Durómetro	
Propriedades térmicas		Valor típico		Método do teste		
Taxa de fluxo de massa fundida (MFR)		41 g/	10 min.	ISO 1133 (260 °C, 5 kg)		
Deflexão térmica (HDT) a 0,455 MPa		-		-		
Deflexão térmica (HDT) a 1,82 MPa				-		
Temperatura de amolecimento Vicat a 10 N		97 °C		ISO 306		
Transição vítrea		-		-		
Coeficiente de expansão térmica		-				
Temperatura de fusão		225 – 245 °C		ISO 294		
Retração térmica		-		-	-	
Outras propriedades		Valor típico		<u>Método do</u>	Método do teste	
Gravidade específica		1,10	1,10 ISO 1183			

(*) Ver notas.

Classificação da chama

Notas

As propriedades reportadas no presente documento correspondem à média de um lote típico. As amostras de testes de impressão 3D foram impressas no plano XY, utilizando o perfil de qualidade normal no Cura 2.1, uma Ultimaker 2+, um bocal de 0,4 mm, 90% de enchimento, temperatura do bocal de 250 °C e da placa de impressão de 80 °C. Os valores representam a média de 5 amostras brancas e 5 amostras pretas para os testes de tração, flexão e impacto. A dureza de Shore D foi medida num quadrado com uma espessura de 7 mm impresso no plano XY, utilizando o perfil de qualidade normal no Cura 2.5, uma Ultimaker 3, um núcleo de impressão de 0,4 mm e 100% de enchimento. A Ultimaker está constantemente a trabalhar na expansão dos dados da ficha técnica.

Isenção de responsabilidade

Qualquer assistência ou informação técnica constante no presente documento é fornecida e aceite à responsabilidade do utilizador; a Ultimaker e as suas afiliadas não dão qualquer garantia relacionada ou derivada da mesma. A Ultimaker e as suas afiliadas não serão responsáveis pela utilização destas informações nem de nenhum produto, método ou aparelho mencionado, tendo o utilizador de fazer a sua própria determinação da adequação e exequibilidade para a sua própria utilização, para a proteção do ambiente e para a saúde e a segurança dos seus funcionários e dos compradores dos seus produtos. Não é dada nenhuma garantia de comerciabilidade ou adequação de nenhum produto; nada no presente documento revoga nenhuma das condições de venda da Ultimaker. As especificações estão sujeitas a alterações sem aviso prévio.

Versão

<u>Data</u>

Versão 3.011

16/05/2017

Ultimaker